Wrappers

- The wrapper approach can be used to select subsets of features or do parameter tuning.
- The idea is to utilize the learning algorithm in the process of feature selection.
- Each set of features can be evaluated by a fivefold cross-validation utilizing the learning algorithm.
Wrappers

- The wrapper approach conducts a search space in the space of possible parameters.
- Let a feature set be a node in the search space.
- Clearly, neighboring states would be all states with one more or one less feature.
Four features $x_1, x_2, x_3, \text{ and } x_4$. With start state s_1.
How to search?

• Use a best first search algorithm.
• Use either forward selection which is a search that begins with an empty set features.
• Or use backward elimination which is a search that begins with a full set features.
• Generate successor states by adding or subtracting n features.
• We can have special operators which add more than 1 or subtract more than one feature.
Algorithm

1. Put the initial state on the open list, the closed list is the empty set and Best <- initial state.

2. Let $v = \arg \max f(w_i)$ (get the state from OPEN with maximal $f(v)$).

3. Remove v from OPEN, add v to CLOSED.

4. If $f(v) - \text{eps} > f(\text{BEST})$, then BEST <- v.
Algorithm (continued)

5. Expand v: apply all operators to v, giving v’s children.

6. For each child not in the CLOSED list, evaluate and add to the OPEN list.

7. If BEST changed in the last k expansions, go to 2

8. Return BEST.
Evaluation function

• You use the accuracy of a fivefold cross validation to evaluate a particular feature set.

• Forward selection tends to give small feature sets that are as accurate or more accurate with decision trees.

• Backward elimination tends to give larger feature sets which are even more accurate at the cost of running times that are five times longer than forward selection.
References

